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Presentation outline

- Multi-scale adaptivity

> Fluids modelling

> Solids modelling

» Coupled solids-fluids modelling

- Radiation transport modelling

> Coupled radiation transport multi-phase fluid
flow

> Rapid modelling
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A Quick Review of the Numerical Technology
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Moving and adaptive meshes

2

KRSk T

LN 2

Node movement for interface tracking
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CFD Modelling

Mesh Adaptivity and Domain Decomposition

Flow past a backward facing step — a classical CFD problem for motivation
and validation

Movie below shows the entire domain, and then zooms of a tracer field, the
adapting mesh, and the adapting load-balanced domain decomposition
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" CFD Modelling

Mesh Adaptivity and Domain Decomposition

Nodes

Lower frame shows the domain
decomposition which has been optimised
to balance the load based on number of
nodes and minimised edge cut



Viscosity is set to 1.5x108
m?2s-1

 Gives a wave Reynolds
number of 10°

e More indica_tive_of an internal
__—_— wave breaking in the ocean

Parallel simulation performed on 32 processors
Maximum number of nodes is approximately 3 million
Smallest element has edge lengths of 10°m

Would require more than 1 billion nodes if run on a uniform mesh with
those edge lengths everywhere
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Modelling with fractures
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Test cases: Fluvial channels
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Test cases: Fluvial channels with Kv/Kh
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Generation’of Urban Geometry using Urban-Terreno
Area around Imperial College London
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Environmental Modelling

24 Building Case (600000 Nodes): 20 Processors
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Environmental Modelling

Moving Vehicles and Scalar Dispersions in Street Canyons




Imperial Coll
fohdon LES flow with traffic modelling

Page 14 © Imperial College
London



Imperial College  Environmental Modelling

Mo'd'e.lling Gas Dispersion around an Industrial Site

i\

e Neutral atmospheric conditions are assumed

* Mechanical turbulence is added to the incident wind profile to enhance realism
 Physical analogue to terrain roughness effects
e Similar to approach used in wind tunnel experiments

* Incident wind adjusted to give an approximate wind velocity of 4-6m/s at the tower
to match instrument readings

e The iso-surface (left) and contour (right) indicate the 1/200™ concentration level
relative to the exit flue gas concentration

e Clearly the plume strongly impacts the building and surrounding area



ing

Environmental Modell

Imperial College
London

ion around an Industrial Site

ispers

Gas D

Modelling




Imperial College Environmental Modelling

Modelling Gas Dispersion around an Industrial Site
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Modelling of cloud formation
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Imperial College 2. Numerical modelling
Application to Coastal Structures

Max contact force (N)
EOOOOO

~600000

400000

Ezooooo

6000

~4000 rocks form
rough underlayer

242 CORE-LOC™ units
form armour unit layer

—~6M nodes
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FEMDEM: Large Finite Strain Capability
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Interface tracking - 3 materials
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Rock slide into water — volume fraction of air/water




The clamped beam simulation

Pressure
‘300
200

1100

.
0

P, =516Pa

Fluid mesh size: 0.08m*0.08m
Beam mesh size: 0.04m*0.04m



Pressure
l1_0000000

27500000
5000000
2500000

|

0

Gas:
Block: 2Zm*2m concrete Centre hole: R=10cm

P, =1e+8Pa Fluid mesh size: 0.033m*0.033m
T =1000K Block mesh size: 0.03m*0.03m
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Radiation transport -Reactor physics
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'Multi-orid preconditioned solvers: €567 Benchmark
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Coupled Multi-phase and RT Model: FETCH

Validation: Tracy (voln frac. (left); temp. (right))
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' Coupled Multi-phase and RT Model: FETCH

Benchmark: Bubbly Flows - JCO Japan Criticality Accident (AMCG-JAEA)

P Symmetric > Modelled ‘adding the last bucket’
as continuous filling
pas volume > Independent response to UK

media interest
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London Y12 criticality accident

Dynamics over the first 30 seconds

\

temp]1
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TSnlutiun pumped in from bottom

Volume Fraction of
the gas(blue) and
liquid (red) phase

Solution Temperature
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London SUPO simulation

eSpherical; ~1 ft in diameter
eContains an enriched uranium solution

~eCooled using three 20Tt Tong cooling Coils
submerged into the solution

*Contains other internal components that will affect
fluid flow patterns.

SUPO with half SUPO modelled in
shell removed axisymmetric geometry

Volume Fraction of the Solution Temperature Power Distribution
gas(blue) and liquid (red)

phase
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tondon Modelling of PWR assemblies

o 17x17 fuel pin assembly with moving
—control rods and _coolant flow

« Heat generation and diffusion within
solid pins modelled.

« Displacement of fluid around the pins
and transfer of heat to the coolant is

i simulated.

PWR Fuel Assembly SR « We are able to calculate assembly

power.

Control Rods
Soit Tamp. Fiuld Temp. Valocily
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Cold water
insertion region

Ass

Coolant enters the
core 20 Deg. C. *
Cooler in one 1/4
of the core due to
an excessive

stream demand Fluid temperature Reactor Power Pin temperatur
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. 0 . . e
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307.

These technologies have been extended further to model full PWR cores.
Here an asymmetric core perturbation is simulated where ¥4 of the core experiences
a colder cooling water at it inlet.
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Full core reactor modelling

0.0e+00 1.2e 5e+08 37e+08 AGe+08 286 205, 312, 321, 29e+02 4.7e+02 5.5e+02 8 4e+(C2 1.Ce+03)

power Coolant temperature Pin temperature

Here another PWR core is simulated initially from an
intended operational state. In this simulation the effects ¢
sudden control rod ejection is studied.

Ejecred Hod

OGroup 1
OGroup 2
OGroup 3
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Coupled Multiphase Flow and Neutron-Radiation Transport

Conceptual Nuclear Fluidised Bed Reactor

Model

-~ PyC coating

= _-8iC coating

"~ PyCcaating

~ __~ Carbon buffer layer

U0, Kemal
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Velocity solution from high fidelity model and FSI NIROM using 3, 6 and 20 POD
bases at point (x=0.27543, y=0.29336)
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Reduced order model - Nonintrusive
Full model and ROM : flow past cylinder, flow past 2 buildings
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Left: Full model, Middie: 30 POD hases, Right:12 POD
hases
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Velocity Magnitude
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(a) Full model, NIROM with 12, 36 and 72 POD, r = 1.0 (b) Full model, NIROM with 12, 36 and 72 POD.t = 1.5
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(¢) Full model, NIROM with 12, 36 and 72 POD, ¢ = 2.0  (d) Full model, NIROM with 12, 36 and 72 POD, ¢ = 2.5
Funded by Janet Watson PhD scholarship at ESE, Imperial college.
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Full, NIROM with 12, 36 and 72 POD hases

Velocﬂy Magnltude
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Full model, NIROM with 6, 12 and 50 POD hases.

L1 L1 L
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Time analysis

The simulations were performed on 12 cores machine of an
Intel(R) Xeon(R) X5680 processor with 3.3GHz and 48GB RAM.

The test cases were run in serial, which means only one core was used when simulating

Table I: Comparison of the online CPLU time (dimensionless) required for running the full model and POD-
RBF ROMs during one time step.

Cases Model assembling and | projection | interpolation total
solving
bending | Full model 495120 0 0 495120
beam NIROM 0 0.0003 0.0001 0.00040
Full model 224.47059 0 0 224 47059
blasting | NIROM 0 0.0003 0.0001 0.00040

Speedup: 561,175, five orders of magnitude.
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Conclusions

> Multi-physics solids/fluids/radiation
coupling aided by multi-scale/adaptive
resolution

> Goal based error measures for mesh
adaptivity

> Future directions: reduced modelling,
uncertainty, linking models with observations
and experiments
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