MULTIPHYSICS 2017

Design Evolution of Large Airliners Thurai Rahulan

Beijing Institute of Technology 14th December 2017

George Cayley

1809

Lanchester: wing theory

Kutta (1902) – Joukowski (1906) law

Curve (camber) wing to smoothen flow

Blunt leading edge to cope with changes in the angle of attack

Prandtl 1918: thick wing section

Founding of study agencies

1915National Advisory Committee for
Aeronautics (NACA)

1918 Royal Aircraft Establishment (RAE)

1920s: Flat-bottom section


```
Clark-Y-15
```

Four-digit section defined in 1932

NACA 2412

Five-digit aerofoil (1935): max camber shifted forward for greater max lift

NACA 23012

1900 – 1940: engine W/N up by x 17

Short Belfast: helical blade tip vortices

1939: Theory applied aerofoil design 1-series (series-16) aerofoils to reduce shock wave & cavitation problems {aircraft & marine propeller design}

NACA 16-212

1942: 6-series aerofoils to maximise laminar flow (only if free of bugs & vibn)

NACA 65,-212

1950s: M=0.7, rapid decel thru strong shock wave, boundary layer separation

1970s: M~0.7, distributed decel thru stepped shock waves to delay drag rise (Kawalki 1940 and Whitcomb@NASA)

Reflexed trailing edge for stabitiy

Minimise the tail load by maximising the moment arm

Beechcraft Starship (1986)

Bäumer Sausewind (1925) elliptic wing planform

Republic XF-91 Thunderceptor 1949

Mar-

Douglas DC-1 (1933)

-223

Adolf Buseman

Swept/Delta wing theory (1935)

Max Planck Institute Gottingen University

(Theodore von Karman, Ludwig Prandtl, ...)

Voor V_{∞} ν_{con} Swept leading edge reduces normal velocity component

Enables flight closer to the sound barrier

But span-wise flow component problem

Polish PWS Z-47 "Sęp III"(LF)

Agust Zdaniewski 1936

Alexander Lippisch

Thick winged highly swept wing theory

Me 163 Komet 01 Sep 1941

Avoid curve in lines of static pressure

wing root nose section thickened and zero or negative camber

Restore isobar sweep with "peaky" root airfoil

wing tip geometry

dip nose, increase camber, thin section

Auxiliary control lines

aerodynamic washout

thinner tip

geometric washout

chord taper

straight spars & hinges

A380 / B747

Plan form geometries

An-225 (1988): landing gear, ditching

Single deck tri/quad isle 16/19 abreast Emergency evacuation, pressurisation

Fin positioning: 1/3 of rudder area be unblanketed from tailplane wake

Fin size

<u>Big</u>

<u>Small</u>

Dutch Roll Oscillation

Spiral Departure

High Altitude, Mach No

Spin Recovery

Cross-Wind Landing

Radio Wave Interference

International Standard Atmosphere 1993

Variation of dry air temperature with altitude Alt: cabin pressure (structure weight), anoxia (low blood O₂, aggressive), hypoxia (low tissue blood, comatose), atelectasis (high O₂, low N₂, collapsed lung, emergency descent – breathe normally)

Thermal efficiency – max temp difference

@ 11 km: 217K, 23 kN/m^2, 0.36 kg/m^3

Max L/D & fastest @ 0.85 x 295 m/s

Lockheed Constellation (1943)

Boeing 377 Stratocruiser (1947)

Douglas DC-7 (1953)

Ilyushin Il-18 (1957)

Fastest prop Tupolev Tu-114 (1957)

Largest turboprop Antonov An-22 (1965)

Low-speed flight: fine blade pitch

High-speed flight: coarse pitch

Engines

What type(s)?

How many?

Where?

Why?

Ilyushin Il-62 (1963)

and the formation of the second

minimum

17 Zili

RA-86559

Lockheed L-1011 TriStar (1970)

McDonnell Douglas MD-11 (1990)

De Havilland Comet (1949)

VFW-Fokker 614 1971

reduced FOD shorter legs lighter wing

But ... wing aerodyn maint access

Take-off thrust 60 units

	2 Engines	4 Engines
Т/Е	60/(2-1) = 60	60/(4-1) = 20
total T	60x2 = <mark>120</mark>	20x4 = <mark>80</mark>
W/E	60/5 = 12	20/5 = 4
total W	12x2 = <mark>24</mark>	4x4 = <mark>16</mark>

Wing torsion box

Control effectiveness and reversal

Twist as a result of moment induced by deflected aileron

Short SB.1 aero-isoclinic winged tailless glider with elevons 1951

Short SB4 Sherpa, twin jet 1953

B.35/46 specification driven design

Rotating wing tip (20% wing area)

Boeing B-47 Stratojet (1947)
Structural distortion due to aerodynamic loads

A380 wing static test, Toulouse, 25 May 2004 300 jacks, 2815 loading points, 8000 strain gauges, wing tip 8m peak-to-peak

Fuselage bending: stability margins

Modelling to study structural dynamics

1.7 Hz, 5.6 Hz, 6.6 Hz, 15.4 Hz

2.9 Hz, 6.7 Hz, 9.0 Hz, 14.3 Hz

GVT: 17 exciters and 850 accelerometers Six weeks of testing to refine math model

Box, closed, circular, annular, ring wing

Built by Cranfield Aerospace for Boeing/NASA (2007)

Auxiliary systems

Hydraulics: 346 Bar (5000 psi)
Electrics: 115 V, 400 Hz, three phase
Pneumatics: cold air unit, compressed air
Avionics: radar, nav, comms, lighting
Landing gear: 500 C service landing, 14 atm
APU: IC engine, fuel cell or LiPo?

Acknowledgements: Many, including Dave Myring, Les Johnston, Eileen Rahulan (Salford); Jonathan Cooper (Bristol); Andy Lewis (Hertfordshire); Mike Graham, Peter Bearman (Imperial College); Ranjan Banerjee, Chris Atkin (City); Brian Richards (Glasgow); Joe Sutter, Mike Lavelle, Paul Kuntz, Suzanna Darcy-Hennemann, Pam Valdez, Panos Samolis (Boeing); Mark Hockenhull, Frank Ogilvy, Behrooz Barzegar, Jeff Jupp, Harry Nelson, Mark Cousin, Bernard Mattos, Kamran Iqbal, Hugh Dibley, Nicholas Dart (Airbus); Wikipedia, Raymer, many other References/web sites; Richard de Crespigny, Khalid Al Shoubaki and YOU!

Fair Winds and Happy Landings

CRAIC CR 929-500/600/700