Finite Elements and Particle methods for Industrial Applications

Souli Mhamed

Essam Elbahkali Moatamedi Mojtaba

Multiphysics Conference

Dubai December 24-15 2019.

Introducing FEM and SPH Methods

Introducing SPH Method

1) Unlike Molecular dynamic Analysis, SPH method is a deterministic method and not a statistical method.
2) Corpuscular Method is a statistical method and solves for velocity Distribution, or the probability of having a specific velocity.
3) Corpuscular method solves for Maxwell-Bolzmann distribution equation for velocity

Introducing SPH Method

1) Like FEM Method, SPH method uses conservation equations for continuum Mechanics to solve for velocity, pressure and energy.

$$
\begin{aligned}
\frac{d \rho}{d t} & =-\rho \cdot \nabla \cdot \vec{v} \\
\frac{d \vec{v}}{d t} & =-\frac{1}{\rho} \cdot \nabla \cdot \sigma+f_{e x t} \\
\frac{d e}{d t} & =-\frac{1}{\rho} \cdot \sigma \cdot \nabla \cdot \vec{v}
\end{aligned}
$$

Introducing SPH Method

1) In FEM Method a weak formulation is used to solve Conservative equations
2) In SPH method we use a collocation method . to solve Conservative equations

$$
\begin{aligned}
& \frac{d \rho}{d t}=-\rho \cdot \nabla \cdot \vec{v} \\
& \frac{d \vec{v}}{d t}=-\frac{1}{\rho} \cdot \nabla \cdot \sigma+f_{\text {ext }} \\
& \frac{d e}{d t}=-\frac{1}{\rho} \cdot \sigma \cdot \nabla \cdot \vec{v}
\end{aligned}
$$

Lagrangian FEM and SPH Formulations

Cylindrical mesh and nodes

Why do we need the mesh ?

Unlike FEM Method, because of the missing mesh the SPH method suffers from:

1) Function interpolation
2) Support domain different from Influence Domain
3) Lack of Consistency
4) Tensile Instability
5) Boundary Conditions

Question:

Function interpolation

In FEM we need the mesh for:

1) Function Interpolation at any location. x

$$
u(x)=\sum_{j} u_{j} \cdot N_{j}(x)
$$

2) Derivative of Function at any location.

$$
\nabla u(x)=\sum_{j} u_{j} \nabla . N_{j}(x)
$$

$N_{j}(x)$ Shape function at node j

Function interpolation

In SPH method, we need to define:

1) Interpolation Function
2) Derivation of function, to solve conservative equations

$$
\begin{aligned}
& \frac{d \rho}{d t}=-\rho \cdot \nabla \cdot \vec{v} \\
& \frac{d \vec{v}}{d t}=-\frac{1}{\rho} \cdot \nabla \cdot \sigma \\
& \frac{d e}{d t}=\frac{1}{\rho} \cdot \sigma \cdot \nabla \cdot \vec{v}
\end{aligned}
$$

Integral interpolation

At any location x the integral interpolation of the function $u(x)$ is defined:

$$
u(x)=\int_{\Omega} u(y) \cdot \delta(x-y) \cdot d y
$$

δ : DIRAC function satisfies:

$$
\int_{\Omega} \delta(x-y) \cdot d y=1
$$

Integral interpolation

The Dirac Function is approached by the Kernel Function $W(r, h)$

$$
\int_{\Omega} W(r, h) d r=1
$$

$$
h \rightarrow o \quad \Rightarrow \quad W(r, h) \rightarrow \delta_{r}
$$

Integral interpolation

The Kernel Function W is defined by:

$$
\begin{aligned}
& W(d, h)=\frac{1}{h^{\alpha}} \cdot \theta\left(\frac{d}{h}\right) \\
& \theta(d)=C \times\left\{\begin{array}{l}
1-\frac{3}{2} d^{2}+\frac{3}{4} d^{3} \text { si } \quad 0 \leq / \mathrm{d} / \leq 1 \\
\frac{1}{4}(2-d)^{3} \text { si } 1 \leq / d / \leq 2 \\
0 \quad \text { elsewhere }
\end{array}\right] \mathrm{d} / \mathrm{h}
\end{aligned}
$$

Integral interpolation

Kernel function for 2D problem

Interpolation Consistency

A central issue in SPH method is how to perform function interpolation with consistency with no mesh

Unlike FEM, SPH method cannot reproduce:

1) Constant function

$$
\mathrm{u}(\mathrm{x})=1 \quad \sum_{j} N_{j}(x)=1 \quad \sum_{j} \omega_{j} . W\left(x-x_{j}^{\prime}, h\right) \neq 1
$$

2) Linear function

$$
\mathrm{u}(\mathrm{x})=\mathrm{x} \quad \sum_{j} x_{j} N_{j}(x)=x \quad \sum_{j} \omega_{j} \cdot x_{j} . W\left(x-x_{j}^{\prime}, h\right) \neq x
$$

Why do we need SPH to reproduce constant and linear function ??

Smoothing length

Consistency of constant function

u constant function: $u(x)=1$

$$
\sum_{j} N_{j}(x)=1
$$

$$
\sum_{j} \omega_{j} . W\left(x-x_{j}^{\prime}, h\right) \neq 1
$$

For constant function:

FEM Interpolation is exact

SPH Interpolation is not exact.

SPH Interpolation does not reproduce constant functions

Tensile Instability

Tensile instability occurs when particles are under tensile stress.
The motion of the particles become unstable

Time $=0$

Eulerian Kernel

Lagrangian Kernel

In the Lagrangian Kernel, the particle volume and the smoothing length are from initial configuration. The particle neighbors do not change with time The Lagrangian Kernel is not suitable for problems of fluid flow

Lagrangian Kernel

Eulerian Kernel

Support and Influence Domain in SPH

are in the influence domain of \square and not in the support domain Influence domain of Particle is different from support domain

Boundary Conditions

$$
\begin{array}{lll}
u\left(x_{i}\right)=\int_{\Omega} u(y) \cdot W\left(x_{i}-y, h\right) \cdot d y & \longrightarrow & u\left(x_{i}\right)=\sum_{j} \omega_{j} \cdot u_{j} \cdot W\left(x_{i}-x_{j} \cdot h\right) \\
u^{\prime}(x)=\int_{\Omega} u^{\prime}(y) \cdot W(x-y, h) \cdot d y & \longrightarrow & u^{\prime}\left(x_{i}\right)=\sum_{j} \omega_{j} \cdot u_{j}^{\prime} \cdot W\left(x_{i}-x_{j} \cdot h\right)
\end{array}
$$

As in FEM we want to have $u^{\prime}\left(x_{i}\right)=\sum_{j} \omega_{j} \cdot u_{j} \cdot W^{\prime}\left(x_{i}-x_{j} \cdot h\right)$
This is not true if the particle i is on the boundary

$$
\begin{gathered}
\int_{\Omega} u^{\prime}(y) \cdot W(x-y, h) \cdot d y=-\int_{\Omega} u(y) \cdot W^{\prime}(x-y, h) \cdot d y \quad+\int_{\text {boundary }} u(y) \cdot W(x-y, h) \cdot d y \\
\int_{\text {undary }} u(y) \cdot W(x-y, h) \cdot d y \neq 0 \quad \text { for particle near the boundary }
\end{gathered}
$$

Boundary Conditions

Approximation of conservation Laws

For each particle I, we solve:

$$
\begin{aligned}
& \frac{d}{d t} \rho_{i}=-\rho_{i} \sum_{j} \frac{m_{j}}{\rho_{j}}\left(v_{j}-v_{i}\right) W_{i j}^{\prime} \\
& \frac{d}{d t} v_{i}=\sum_{j}-m_{j}\left(\frac{\sigma_{i}}{\rho_{i}^{2}}+\frac{\sigma_{j}}{\rho_{j}^{2}}\right) W_{i j}^{\prime} \\
& \frac{d}{d t} e_{i}=\frac{P_{i}}{\rho_{i}^{2}} \sum_{j} m_{j}\left(v_{j}-v_{i}\right) W_{i j}^{\prime}
\end{aligned}
$$

No kernel function $W_{i j}$ involved in conservative equations

Only derivative of the kernel $W_{i j}^{\prime} \quad$ involved

BOUNDARY_SPH_SYMMETRY_PLANE

- Creates GHOST particles

Ghost particle

Plane of Symmetry

How the SPH mesh should be compared to the Lagrangian mesh Same mesh or finer mesh ?

Water impacting a plate

Time $=0$

Time $=0$
Fringe Levels
$0.000 \mathrm{e}+00$
$0.000 \mathrm{e}+00$
$0.000 \mathrm{e}+00$
$0.000 \mathrm{e}+00$

$0.000 \mathrm{e}+00$
$0.000 \mathrm{e}+00$

Time $=\quad 0$
Contours of Effective Stress ($\mathrm{v}-\mathrm{m}$)
max IP. value
$\min =0$, at node\# 101965
$\max =0$, at elem\# 101965

x

Lagrangian Results

SPH meshes in 3D

Same mesh for SPH and Lagrangian

Time $=0$

Contours of Effective Stress (v-m) max IP. value
$\min =0$. at node\# 101965
Time $=0$
Contours of Effective Stress (v-m)
max IP. value
min=0, at node\# 101965
$\max =0$, at elem\# 101965

$\mathbf{Z}^{\mathbf{Y}} \mathrm{X}$

SPH meshes in 3D

Time $=0$
Contours of Effective Stress (v-m)
max IP. value
$\min =0$, at node\# 101965
$\max =0$, at elem\# 101965

Fringe Levels

$0.000 \mathrm{e}+00$
$0.000 \mathrm{e}+00$
$0.000 \mathrm{e}+00$
$0.000 \mathrm{e}+00$
$0.000 \mathrm{e}+00$
$0.000 \mathrm{e}+00$

$\mathcal{E}^{Y} x$

Resultant force: A: SPH B: Lagrangian

Momentum: A: SPH B: Lagrangian :

Vertical disp A: SPH B: Lagrangian

Momentum: A: SPH B: Lagrangian

Finer SPH meshes in 3D

SPH 3D mesh finer than Lagrangian

Time $=0$

Resultant force: A: SPH B: Lagrangian

A Ma 1
B SI 1

Momentum: A: SPH B: Lagrangian

Vertical disp A: SPH B: Lagrangian

A Y-displacement B 102720

Vertical vel: A: SPH B: Lagrangian
Time ($\mathrm{E}-03$)

ALE and SPH for explosive problems

Fringe Levels
$0.000 \mathrm{e}+00$ $0.000 \mathrm{e}+00$ $0.000 \mathrm{e}+00$
$0.000 \mathrm{e}+00$
单弗 ب U ب
弗
 ب
 Н ب
 \＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃

U

بn

\section*{| Y |
| :--- |
| $\& \quad X$ |}

2D Lagrangian mesh

Time $=0$
Contours of Effective Stress (v-m)
max IP. value
$\min =0$, at elem\# 100000
$\max =0$, at elem\# 100000

2D Lagrangian mesh

2D SPH mesh

Time $=$ 0

xdisp A: Lag B: SPH

xvel A: Lag B:SPH

Time $=0$
Contours of Effective Stress (v-m)
max IP. value
$\min =0$, at node\# 100000
$\max =0$, at elem\# 100000

2D finer SPH

Time $=$

2D SPH and Lag mesh
water impact
Time $=0$
Contours of Effective Stress (v-m)
min=0, at elem\# 203
$\max =0$, at elem\# 203

Fringe Levels
$0.000 \mathrm{e}+00$

2D fine and coarse SPH

xdisp A: Lag B: SPH

Xvel: A: Lag B: SPH

Explicit Contact Algorithm

2) Penalty Based Contact.

SPH Adaptive mesh

After element erosion, we loose element mass and momentum
To keep mass and momentum of eroded element, the eroded element is replace by One or more SPH particles

Eroded element are not replaced by particles

Time $=$

Eroded element replaced by particles

Time $=$

Thank You

