

NAVAL Postgraduate School

FLUID STRUCTURE INTERACTION ON COMPOSITE STRUCTURES: EXPERIMENTAL & NUMERICAL STUDIES

> Y. W. Kwon Distinguished Professor Dept. of Mech. & Aero. Engineering Naval Postgraduate School Monterey, California, USA

Multiphysics Conference, December 13-14, 2012

- Introduction
- Objectives
- Experimental Impact Study
- Effect of Nanomaterials (CNT/CNF)
- Computational Modeling and Simulation
- Conclusions

Introduction

- Increasing use of composite materials for naval applications
 - Surface ship hull structures
 - Superstructures, Sonar domes, etc.
- Polymer composite materials are much lighter than metals
 - Sandwich structures even lighter than standard laminated composite structures
- The fluid effects are important on sandwich and/or laminated polymer composite structures because of their low densities.

- To understand and predict the effects of Fluid-Structure Interaction (FSI) on dynamic response and failure of laminated or sandwich polymer composite structures when in contact with water
- To conduct experimental study to measure the effect of FSI on laminated or sandwich composite structures
- To study the effect of locally distributed CNT & CNF on the interface strength under FSI
- To develop multiphysics based computational techniques for FSI

5

- In order to evaluate the FSI effects on composites, the same impact loading conditions are applied to the same composite structure, either immersed in water (called wet structure) or in air (called dry structure) without causing damage.
- The same impact loading conditions are applied to composite structures causing damage under dry and wet structures.

Impact Conditions

- (A): Air-backed dry impact => Dry impact (Baseline)
- (B): Air-backed wet impact
- (C): Water-backed wet impact
- (D): Water-backed dry impact
- Impact on the top surface of the plate

Impact Testing Equipment

- Free fall impact machine
- Anechoic water tank

• Schematic of VARTM

VARTM Technique

Water-Backed Dry Impact

Impact force comparison between dry and wet case no damage damage for wet damage for both (15 cm)(20 cm)(50 cm) 3500 1200 1800 Drv Dry Dry Wet 1600 Wet Wet 3000 1000 1400 2500 800 1200

NAVAL

SCHOOL

POSTGRADUATE

И ³⁰⁰⁰⁰ 9000 1500 Forge, N 400 600 1000 400 200 200 500 200 0 50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450 ñ Õ Time, msec Time, msec Time, msec WWW.NPS.EDU

• Damage growth along with the drop height

Water-Backed Dry Impact

Normal strains at gage #2 (no damage)

Normal strains along x-axis at gage #2

• Normal strains along x-axis at gage #3

Water-backed Wet Impact

Strain-y at gage #4 vs. drop height

NAVAL POSTGRADUATE Dry & Wet Impact on E-glass Plate JPS

Time (mS)

WWW.NPS.EDU

FSI Effect on Composite Plate

Natural Frequency

	T (sec)	ωd (rad/sec)
Dry ε2x	0.010	645.758
ε1χ	0.010	657.592
ε2γ	0.010	655.875
ε1γ	0.010	655.875
Water-backed wet ε2x	0.034	187.463
ε1x	0.033	189.442
ε2γ	0.033	189.442
ε1γ	0.033	189.157
Air backed wet ε2x	0.026	241.660
ε1x	0.026	242.471
ε2γ	0.026	242.004
ε1γ	0.025	247.244

17

17

FSI Effect on Composite Plate

Added Virtual Mass Increment Factor β

NAVAL

SCHOOL

POSTGRADUATE

		Wet ωn	Dry ωn	β factor
		(rad/sec)	(rad/sec)	
Water-backed	ε2x	173.3422	615.6221	11.61
	ε1x	176.6594	661.6360	13.03
	ε2y	179.1838	633.4428	11.50
	ε1γ	173.2472	614.7481	11.59
Air-backed	ε3х	223.4895	615.6221	6.59
	ε1x	238.2935	661.6360	6.71
	ε2γ	226.9937	633.4428	6.79
	ε1γ	226.8572	614.7481	6.34

- ¹/₄" Balsa core
- 2-3 plies 6 oz E-glass skin
- Derakane 530A vinyl ester resin
- 1" beams

Progressive Impact on E-glass Sandwich Beam

	Impact Tost	Drop Height (mm)					Failuro	
	Specimen	355.6	406.4	457.2	558.8	609.6	660.4	Site
	Wet Test #1	805	869	885*	-			Mid-span
Force (N)	Wet Test #2	916	1030	1090*	ŀ	-		Mid-span
	Avg. Wet test	861	950	988			7	
	Dry Test #1	720	767	792	912	1032*		Boundary
	Dry Test #2	829	892	905	934	990	1010*	Boundary
	Avg. Dry Test	774	830	849	923	1011	1010	

Failure of Sandwich Beam

Dry Impact Failure

Wet Impact Failure

- Pre-cracked beam, 300 mm x 25 mm
- Clamped at both ends
- Impact to the top center
- Strain gage attached to the bottom center

NAVAL POSTGRADUATE Pristine and Functionalized CNTs

SEM showing comparison

Functionalized MWNT

Pristine CNT

Pristine and Functionalized CNT

SEM showing comparison

Functionalized MWNT

Pristine CNT

Interface Strength with CNT

 Comparison of two concentrations of CNT

NAVAL

SCHOOL

POSTGRADUATE

- 7.5g/m² and the 11.5g/m² resulted in strength increase over the non-reinforced composite joints
- 7.5g/m² provided the greatest strength increase (10.6%)
- Standard deviation shows no overlap between the results of the non-reinforced and 7.5g/m² concentration level

WWW.NPS.EDU

Failure Stress

POSTGRADUATE

NAVAL

SCHOOL

- All five trials were used for stress data analysis
- 3 types of MWCNT provided a strength increase greater than 11%
- Best based on strength increase and smallest standard deviation.
 - D = 30 +/-15nm, L = 5-20 microns, Purity > 95%

Phase 3 Results: Average Maximum Stress (all-data)

Static Three-Point Bending Load

NAVAL

SCHOOL

POSTGRADUATE

JP

NAVAL POSTGRADUAT Interface Cracks under Dry Impact

Without CNT

Interface Crack Growth w/o CNT

Interface Crack Growth w/ CNT

NAVAL

POSTGRADUATE

JPS

Mode II Crack Propagation

Non-reinforced

CNT reinforced

Crack grows from initial crack tip

Crack begins away from initial crack site and connects to initial crack

Mode II Results

CNT reinforcement results in 30.5% increase in Mode II critical energy release rate (calculated via compliance method)

Dry Beam with and without CNT

w/ CNT

end

of

crack

Broken resin

- CNTs-reinforced failed at higher impact energy
- No significant improvement for CNFs-reinforced samples over non-reinforced samples
- Failure defined as crack growth to the center of the beam

	90cm height		
CNTs-reinforced	9.5mm (no failure at this impact height)		
CNFs-reinforced	66% failure, 10mm for non-failure samples		
Non-reinforced	66% failure, 12mm for non-failure samples		

NAVAL POSTGRADUATE Water-backed air impact on beams

Impact force w/o CNT

Impact force w/ CNT

Water-backed air impact on beams POSTGRADUATE

Strain w/o CNT

NAVAL

SCHOOL

Strain w/ CNT

Computational Model

- Developed 2-D and 3-D models
- Structure: CG- or DG-FEM
- Fluid: FEM, LBM, CA
- Fluid-Structure Interaction
- Fluid analysis is the major computational cost.

Water

- Shell element with displacement DOFs and no rotational DOFs
- Easy to model multiple layers through thickness

- Continuous Galerkin (CG) as well as Discontinuous Galerkin (DG) formulations were used.
- DG is useful to model failure along element interface such as delamination.

Continuous Element Connectivity

Discontinuous Element Connectivity

CG & DG Formulations

Effect of resin layers in numerical modeling

NAVAL POSTGRADUATE Static Bending of Laminated Plate

0/90/0 layers

WWW.NPS.EDU

Comparison between with and without resin layers

Comparison between with and without resin layers

NAVAL

SCHOOL

POSTGRADUATE

IPS

44

- CG: Reduced modulus of resin layer
- DG: Separation of resin/skin interface Partial (tangential) disconnection Full (both normal and tangential) disconnection

Disconnection Model with DG

Full Disconnection

Partial Disconnection

Full Disconnection with DG

Partial Disconnection with DG

× 10⁶

З

_1

-2

47

0.2

Reduced Modulus with CG

Delamination in Composite

• Comparison of three different models

	Undamaged	Full Disconnection	Partial Disconnection	Reduced Modulus
	Max. stress Location	Max stress Location	Max stress Location	Max stress Location
Skin	center	center	zone edge	center
Core	center	center	zone edge	center
Resin top	center	center	zone edge	zone edge
Resin bottom	center	center	zone edge	zone edge

Fluid Medium

• Fluid Domain: FEM, CA, LBM

WWW.NPS.EDU

CA Rule for 2-D Wave Equation

3-D Wave Equation

CA rule for 3-D φ(C,t+1)=(φ(N,t)+φ(S,t)+φ(E,t)+φ(W,t)+φ(F,t)+φ(B,t) -3φ(C,t-1))/3

Time Scale Factor (TSF)

NAVAL

SCHOOL

POSTGRADUATE

JPS

Coupling FE & CA Models

Comparison FE inside CA vs. CA alone

- Classical LBM (CLBM) $f_i(\vec{x} + \vec{e}_i \Delta x, t + \Delta t) - f_i(\vec{x}, t) = \Omega_i(f(\vec{x}, t)) \quad (i = 0, 1, \dots, n)$
- $f_i(\vec{x}, t)$: probability of finding a particle at lattice site \vec{x} and time t, which moves along the *i*-th lattice direction with the local particle velocity \vec{e}_i .
- FE-Based LBM (FELBM)

$$\frac{\partial f_{\alpha}}{\partial t} + \vec{e}_{\alpha} \cdot \nabla f_{\alpha} + \frac{1}{\tau} \left(f_{\alpha} - \tilde{f}_{\alpha} \right) = 0$$

Lid-Driven Cavity

Backward Step

Cylindrical Obstacle

Strouhal No. for Vortex Shedding			
Fred	quency		
Author	Re = 20	Re = 40	
Zhou (2012)	0.92	2.20	
Calhoun (2002)	0.91	2.18	
Rusell (2003)	.94	2.35	
Silva (2003)	1.04	2.55	
This work	.95	2.05	

- LBM computations on GPU, structural dynamics on CPU.
- > Increase performance by:
 - ✓ Maximize overlap of independent calculations
 - ✓ Maximize use of computational resources

Domain Remote from Fin

....

3 34

Method	Average time per time-step (sec)	Percent Speedup
Non-Overlapped	0.0305	-
Overlapped	0.0234	23%

FSI : 2D Lid-Driven Cavity

....

Mo	oment	umMa	ignitude
	2.01	0.02	0.03
0			0.0398

WWW.NPS.EDU

NAVAL POSTGRADUATE SCHOOL

FSI : 2D Lid-Driven Cavity

62

Comparison with and without FSI

Modeling Validation of Wet Plate

Comparison between exp. and num. results

NAVAL

SCHOOL

POSTGRADUATE

- It is essential to include the FSI effect for design and analysis of polymer composite structures which are in contacted with water.
- FSI effect is non-uniform over the composite plate. It is sensitive to boundary conditions.
- Local CNT-reinforcement in a resin interface layer in carbon fiber beams enhanced the fracture toughness significantly.
- Developed Displacement-based shell elements, CA, LBM, FEM, and their coupling tecjniques for FSI.

Thank you for your attention!

