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• Introduction 
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• Effect of Nanomaterials (CNT/CNF) 
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Introduction 

• Increasing use of composite materials for 

naval applications 

– Surface ship hull structures 

– Superstructures, Sonar domes, etc. 

• Polymer composite materials are much lighter 

than metals   

– Sandwich structures even lighter than standard 

laminated composite structures 

• The fluid effects are important on sandwich 

and/or laminated polymer composite 

structures because of their low densities. 
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Objectives  

• To understand and predict the effects of Fluid-Structure 
Interaction (FSI) on dynamic response and failure of 
laminated or sandwich polymer composite structures 
when in contact with water 

 

• To conduct experimental study to measure the effect of 
FSI on laminated or sandwich composite structures 

 

• To study the effect of locally distributed CNT & CNF on 
the interface strength under FSI 

 

• To develop multiphysics based computational techniques 
for FSI 

 

 



Experimental Impact Study 
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• In order to evaluate the FSI effects on 

composites, the same impact loading conditions 

are applied to the same composite structure, 

either immersed in water (called wet structure) 

or in air (called dry structure) without causing 

damage. 

• The same impact loading conditions are applied 

to composite structures causing damage under 

dry and wet structures. 
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Impact Conditions 
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• (A):  Air-backed dry impact => Dry impact (Baseline)  

• (B):  Air-backed wet impact  

• (C):  Water-backed wet impact  

• (D):  Water-backed dry impact 

• Impact on the top surface of the plate 
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Impact Testing Equipment 

• Free fall impact machine  

• Anechoic water tank 
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Vacuum Assisted Resin Transfer Molding 

(VARTM) 

                Source: NSWC-CD 

• Schematic of VARTM 
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VARTM Technique 
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Water-Backed Dry Impact  

• Impact force comparison between dry and wet case 

no damage              damage for wet       damage for both 

(15 cm)   (20 cm)  (50 cm) 
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Water-Backed Dry Impact 

• Damage growth along with the drop height 
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Water-Backed Dry Impact   

• Normal strains at gage #2 (no damage) 

0 50 100 150 200 250 300 350 400 450 
-1.5 

-1 

-0.5 

0 

0.5 

1 

Time, msec 

X
-S

tr
a
in

, 
1
0
0
0
 m

ic
ro

s
tr

a
in

 

  

  

Dry 
Wet 

y x 

y 

1 

2 3 
4 

0 50 100 150 200 250 300 350 400 450 
-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

Time, msec 

Y
-S

tr
a
in

, 
1
0
0
0
 m

ic
ro

s
tr

a
in

 

  

  

Dry 
Wet 



Water-Backed Dry Impact   

• Normal strains along x-axis at gage #2 
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Water-Backed Dry Impact   

• Normal strains along x-axis at gage #3 
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Water-backed Wet Impact 

• Strain-y at gage #4 vs. drop height 
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Dry & Wet Impact on E-glass Plate 
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FSI Effect on Composite Plate 

• Natural Frequency 
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 T (sec) ωd (rad/sec) 

Dry                             ε2x 0.010 645.758 

ε1x 0.010 657.592 

ε2y 0.010 655.875 

ε1y 0.010 655.875 

Water-backed wet  ε2x 0.034 187.463 

ε1x 0.033 189.442 

ε2y 0.033 189.442 

ε1y 0.033 189.157 

Air backed wet        ε2x 0.026 241.660 
ε1x 0.026 242.471 

ε2y 0.026 242.004 

ε1y 0.025 247.244 
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FSI Effect on Composite Plate 

• Added Virtual Mass Increment Factor b 

 

 
b







1

d
w

 Wet ωn 

(rad/sec) 

Dry ωn 

(rad/sec) 

β factor 

Water-backed    ε2x 173.3422 615.6221 11.61 

ε1x 176.6594 661.6360 13.03 

ε2y 179.1838 633.4428 11.50 

ε1y 173.2472 614.7481 11.59 

Air-backed          ε3x 223.4895 615.6221 6.59 

ε1x 238.2935 661.6360 6.71 

ε2y 226.9937 633.4428 6.79 

ε1y 226.8572 614.7481 6.34 
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E-glass Sandwich Composites 

• ¼”  Balsa core 

• 2-3 plies 6 oz E-glass skin 

• Derakane 530A vinyl ester resin 

• 1” beams 
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Progressive Impact on E-glass  

Sandwich Beam 
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Impact Test 

Specimen 

Drop Height (mm) 
Failure 

Site 355.6 406.4 457.2 558.8 609.6 660.4 

F
o

rc
e

 (
N

) 

Wet Test #1 805 869 885* - - - Mid-span 

Wet Test #2 916 1030 1090* - - - Mid-span 

Avg. Wet 

test 
861 950 988 

Dry Test #1 720 767 792 912 1032* Boundary 

Dry Test #2 829 892 905 934 990 1010* Boundary 

Avg. Dry 

Test 
774 830 849 923 1011 1010 
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Failure of Sandwich Beam 
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Dry Impact 

Failure 
 

Wet Impact 

Failure    

 



Carbon Fiber Composite Beam 

• Pre-cracked beam, 300 mm x 25 mm 

• Clamped at both ends 

• Impact to the top center 

• Strain gage attached to the bottom center 
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With or Without 

CNT or CNF 

Pre-crack 

110 mm 



Pristine and Functionalized CNTs 
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 SEM showing comparison Dispersion 

Functionalized MWNT Pristine CNT 



Pristine and Functionalized CNT 
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 SEM showing comparison Dispersion 

Functionalized MWNT Pristine CNT 
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Interface Strength with CNT 

25 

• Comparison of two 
concentrations of 
CNT 
– 7.5g/m2 and the 

11.5g/m2 resulted in 
strength increase over 
the non-reinforced 
composite joints  

– 7.5g/m2 provided the 
greatest strength 
increase (10.6%) 

– Standard deviation 
shows no overlap 
between the results of 
the non-reinforced 
and 7.5g/m2 
concentration level   

Phase 2 Results
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Interface Strength with CNT 
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• Failure Stress 
– All five trials were used for stress data analysis 

– 3 types of MWCNT provided a strength increase 
greater than 11% 

– Best based on strength increase and smallest 
standard deviation. 

• D = 30 +/-15nm, L = 5-20 microns, Purity > 95%  
 

Phase 3 Results: Average Maximum Stress (all-data)
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Static Three-Point Bending Load 
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Interface Cracks under Dry Impact  

      Without CNT         With CNT 

28 
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 Interface Crack Growth w/o CNT  
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 Interface Crack Growth w/ CNT  
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Mode II Crack Propagation  

• Non-reinforced 

 
 

 

 

 

 

 Crack grows from initial 

crack tip 

• CNT reinforced 
 

 

 

 

 

 

 Crack begins away from 

initial crack site and 

connects to initial crack 
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Mode II Results  

 

 

 

 

 

 

 

 

• CNT reinforcement results in 30.5% increase in Mode II 
critical energy release rate (calculated via compliance 
method) 

 

Mode II Average Values
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Dry Beam with and without CNT 

• w/o CNT     w/ CNT 
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Failure under Dry Impact 
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• CNTs-reinforced failed at higher impact energy 

• No significant improvement for CNFs-reinforced samples 

over non-reinforced samples 

• Failure defined as crack growth to the center of the beam 

90cm height 

CNTs-reinforced 9.5mm (no failure at this impact height) 

CNFs-reinforced 66% failure, 10mm for non-failure 

samples 

Non-reinforced 66% failure, 12mm for non-failure 

samples 
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Water-backed air impact on beams 
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Water-backed air impact on beams 
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Strain Data, CNT Reinforced Sample 
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Computational Model 

• Developed 2-D and 3-D models 

• Structure: CG- or DG-FEM 

• Fluid: FEM, LBM, CA 

• Fluid-Structure Interaction 

• Fluid analysis is the major 

computational cost. 

Water 0 500 1000 1500
0

2

4

6

8

10

12

No. of Elements

C
P

U
 R

a
ti
o

 o
f 
F

E
A

 t
o

 C
A



Solid-like Shell Element 

• Shell element with displacement DOFs and no 

rotational DOFs 

• Easy to model multiple layers through thickness 
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CG & DG Formulations 

• Continuous Galerkin (CG) as well as 

Discontinuous Galerkin (DG) formulations were 

used. 

• DG is useful to model failure along element 

interface such as delamination. 
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CG & DG Formulations 

• Effect of resin layers in numerical modeling 
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Static Bending of Laminated Plate 

• 0/90/0 layers 

   Transv. Shear Stress                Diff. of w/ & w/o resin layer 
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Dynamics of Sandwich Plate 

• Comparison between with and without 

resin layers 
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Dynamics of Sandwich Cylinder 

• Comparison between with and without 

resin layers 
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Delamination Model 
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• CG: Reduced modulus of resin layer 

• DG: Separation of resin/skin interface 

Partial (tangential) disconnection 

Full (both normal and tangential) disconnection 



Disconnection Model with DG 

45 

• Full Disconnection • Partial Disconnection 



Full Disconnection with DG 
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Partial DIsconnection with DG 

47 



48 

Reduced Modulus with CG 
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Delamination in Composite 

Materials • Comparison of three different models 

Undamaged Full 

Disconnection 

Partial 

Disconnection 

Reduced 

Modulus 

Max. stress 

Location 

Max stress 

Location 

Max stress 

Location 

Max stress 

Location 

Skin center center zone edge center 

Core center center zone edge center 

Resin top center center zone edge zone edge 

Resin 

bottom 

center center zone edge zone edge 
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Fluid Medium 

• Fluid Domain: FEM, CA, LBM 

 

FEM Domain 

CA or LBM 

Domain 
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CA Rule for 2-D Wave Equation 
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3-D Wave Equation 

• CA rule for 3-D 

ϕ(C,t+1)=(ϕ(N,t)+ϕ(S,t)+ϕ(E,t)+ϕ(W,t)+ϕ(F,t)+ϕ(B,t)

-3ϕ(C,t-1))/3 

• Time Scale Factor (TSF) 
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3TSF =
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Comparison of CA and FEM 
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Coupling FE & CA Models 

• Comparison FE inside CA vs. CA alone 
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Lattice Boltzmann Method 

• Classical LBM (CLBM) 

 

•              : probability of finding a particle 

at lattice site     and time t, which moves 

along the i-th lattice direction with the 

local particle velocity     .  

• FE-Based LBM (FELBM) 
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 Lid-Driven Cavity 



Backward Step 
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Cylindrical Obstacle 
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FSI Model 
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 LBM computations on GPU, structural dynamics on 

CPU. 

 Increase performance by: 

Maximize overlap of independent calculations 

Maximize use of computational resources 

 



FSI Result 
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FSI : 2D Lid-Driven Cavity 
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FSI : 2D Lid-Driven Cavity 
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FSI results 

• Comparison with and without FSI 
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Modeling Validation of Wet Plate 

• Comparison between exp. and num. results 
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Conclusions 

• It is essential to include the FSI effect for design and 

analysis of polymer composite structures which are in 

contacted with water. 
 

• FSI effect is non-uniform over the composite plate. It is 

sensitive to boundary conditions. 

 

• Local CNT-reinforcement in a resin interface layer in 

carbon fiber beams enhanced the fracture toughness 

significantly.  

 

• Developed Displacement-based shell elements, CA, 

LBM, FEM, and their coupling tecjniques for FSI. 
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Thank you for your attention! 
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