Multiphysics 2010, Kumamoto, Japan

Multiphysics Computational Simulations Challenges and opportunities

Univerza v Mariboru

Zoran Ren

University of Maribor Faculty of Mechanical Engineering Slovenia

INTRODUCTION

What is MULTIPHYSICS?

MULTIPHYSICS = multiple simultaneous physical phenomena interaction between two or more physical systems.

Multiphysics Computational Simulations = solving coupled systems of partial differential equations that mathematically model the behaviour of interacting physical systems.

Coupled Systems = when an independent solution of one system is impossible without a simultaneous solution of the others.

Types of MULTIPHYSICS problems

More common and mature analyses of coupled physics:

- fluid-structure (fluid-solid) interaction,
- thermal-mechanical interaction,
- electric-thermal interaction.

New and emerging types of coupled physics analyses :

- all above interactions combined on
- hano and micro level analyses (e.g. MEMS) and
- extremely large scale (e.g. Universe),
- chemical reactions,
- electromagnetic fluids, bioengineering etc.

Computational solution techniques

Two numerical techniques for solving coupled problems are available:

sequentialy-coupled solution process and directly-coupled solution process.

Computational simulations

In the past: separate analyses of each phenomenon individually and consequently, many manual file transfers and data exchanges required; computational analyses cumbersome, errorprone, and time-consuming; often took days or weeks to perform.

Today: multiphysics software packages automatically combine the effects of two or more interrelated physical phenomena, automatically manage the exchange of data and perform information transfers; analyses reliable and quick; users can complete many more iterations in a given time, and explore a broader range of engineering parameters to obtain more accurate solutions.

Software and Hardware

Software: all mayor engineering simulation software packages now include Multiphysics capabilities with use of either single discretisation methods (FEM, BEM, FVM, EFGM etc.) or multiple discretisation methods seamlessly combined.

Hardware: multiple processing capabilities required and easily available through use of modern multi-core CPUs or cluster/cloud computing; future generations of CPUs, based on electro-chemical operating principles, will forewer change computing as we know it today.

Example case studies

Fluid-Structure Interaction (FSI):

- deformations and stresses in operating mixing vessel,
- Fluid filler effect on stiffness of a cellular structure.

Chemical-Fluid-Structure Interaction (CFSI):

behaviour of cellular structure when subjected to underwater shock wave caused by explosion.

ANALYSIS OF THE MIXING VESSEL Fluid dynamics relationships

fundamental equations of the fluid mechanics

 $\frac{D\rho}{Dt} + \rho \cdot \nabla \cdot \mathbf{v} = 0$ $\rho \cdot \frac{D\mathbf{v}}{Dt} = \rho \cdot \mathbf{f} - \nabla \cdot \mathbf{\sigma}$ $Du \quad \delta q_i \quad \mathbf{v} \quad \delta v_i$

 $\rho \cdot \frac{Du}{Dt} = -\frac{\delta q_j}{\delta x_j} + I - p \cdot \frac{\delta V_j}{\delta x_j} + \Phi$

 $\boldsymbol{\sigma} = -\boldsymbol{p} \cdot \boldsymbol{\delta} + 2 \cdot \boldsymbol{\eta} \cdot \boldsymbol{\epsilon}$

Navier-Stokes equations

 $\rho \cdot \frac{D\mathbf{v}}{Dt} = \rho \cdot \mathbf{f} - \nabla \cdot \mathbf{p} + \eta \cdot \nabla^2 \cdot \mathbf{v}$

mass equation

momentum equation

energy equation

constitutive equation

conservation equations

integral form of the Navier-Stokes equations

$$\frac{\partial (\mathbf{v} \cdot \mathbf{p})}{\partial t} \cdot d\mathbf{V} + \int \mathbf{v} \cdot \mathbf{p} \cdot \mathbf{v} \cdot \mathbf{n} \cdot d\mathbf{S} - \int \mathbf{p} \cdot \mathbf{f} \cdot d\mathbf{V} - \int \mathbf{\sigma} \cdot \mathbf{n} \cdot d\mathbf{S} = 0$$

discretisation with the finite volume method

$$\rho \cdot \frac{\Delta \mathbf{v}_i}{\Delta t} \cdot dV_i + \dot{m}_i \cdot \mathbf{v}_i - \rho \cdot \mathbf{f}_i \cdot V_i + \mathbf{p}_i \cdot S_i - 2 \cdot \eta \cdot \mathbf{\varepsilon}_i \cdot S_i = 0$$

Fundamental equations of the quasi-static solid mechanics

- $\mathbf{L}^{T} \cdot \mathbf{\sigma} + \mathbf{p} = \mathbf{0}$ equilibrium equations
- $\boldsymbol{\epsilon} = \mathbf{L} \cdot \mathbf{u}$ kinematic equations
- $\sigma = \mathbf{D} \cdot \mathbf{\epsilon}$ constitutive equations

weak integral form of the equilibrium equations

$$\int_{S} \mathbf{t} \cdot dS - \int_{V} \boldsymbol{\sigma} \cdot dV + \int_{V} \mathbf{p} \cdot dV = 0$$

discretisation with the finite element method

$$\int \mathbf{B}^{\mathsf{T}} \cdot \mathbf{D}_{e} \cdot \mathbf{B} \cdot dV \cdot \mathbf{d}_{e} = \int \mathbf{N}_{e}^{\mathsf{T}} \cdot \mathbf{t}_{e} \cdot dS + \int \mathbf{N}_{e}^{\mathsf{T}} \cdot \mathbf{p}_{e} \cdot dV$$

stiffness matrix force vector

K

lace

ANALYSIS OF THE MIXING VESSEL

Connection between CFX (output data) and MSC/Nastran (input data)

÷	#		INIT MASTER(S)
÷	# CFX-Post data export file		ID d:\Solid-Flui SOL SESTATICS
÷	# crx-5.6 build 2003.04.29-23.00		TIME 10000
÷	#		CEND ECHO = NONE
÷	# <u>Generated from file</u> : d:\cfxs\Mixer_002.res		DISPLACEMENT (P
-	# # Format used:		SPCFORCE (PLOT)
-	# Floats to be displayed with a precision of: 3		FORCE (PLOT, COR
÷	# Variable data will be separated with: ". "		STRESS (PLOT, CO
4	# Vector components will be displayed using no brackets to delimit.		LOAD = 1
4	" Locator Description(s):		BEGIN BULK
	# Blade : BOUNDARY		S Written by :
	# #		\$ Version :
1.	" The following variables will be output for all locators:		<pre>\$ Modeller : \$ Translator :</pre>
Ι.	$\# 1 - \underline{X} [m]$		\$ From Model :
	$\frac{\pi}{4} = \frac{1}{2} \left[m \right]$		\$ Date : \$ ****
ł.	# 4 - Air at 25 C. Porce X [N]		ŝ
1	# 5 - Alf at 25 C. FORCE X [N]		PARAM, POST, -1
1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		PARAM, AUTOSPC, YE
	# 8 - Water at 25 c.Force X [M]		PARAM, K6ROT, 100.
	# 9 - Water at 25 C.Porce Z [N]		PARAM, GRDPNT, 0
	"		CORD2C 1
	1.866e-01, 2.550e-01, -8.884e-02, 2.812e-03, -1.276e-05, -2.819e-03, 5.986e-02, -1.664e-03, -6.835e-02		CORD2S 2
	1.000e-01, 2.00e-01, -0.00e-02, -2.00e-02, -1.02e-07, -1.02e-07, -2.10e-02, -5.00e-01, -5.00e-02, -2.00e-02, -		+MSC.VC2 1.
	1.866e-01, 3.011e-01, -8.902e-02, 3.730e-04, -1.526e-06, -3.734e-04, 3.625e-02, -1.305e-03, -4.492e-02 2.055e-01, 2.902e-01, -6.972e-02, 3.772e-04, -1.700e-06, -3.915e-04, 1.3672e-01, -2.355e-03, -1.556e-01		FORCE 1
	1.866e-01, 3.701e-01, -8.929e-02, 1.637e-03, -6.493e-06, -1.642e-03, 1.424e-01, -2.863e-03, -1.611e-01		FORCE 1
E			
			·
	2.75Ue-U1, 7.5U0e-U2, 9.557e-U5, 9.798e-U2, 1.625e-U3, -1.5U6e-U1, 2.404e-U1, -4.035e-U3, -3.582e-U1 3.062e-01, 1.217e-01, 2.782e-02, 5.089e-02, 1.045e-02, -5.940e-02, 2.663e-01, 6.262e-02, -3.028e-01	,	FORCE 1
	2.966e-01, 1.018e-01, 1.653e-02, 1.307e-01, 2.499e-02, -1.791e-01, 3.568e-01, 6.641e-02, -4.752e-01		\$ MSC.visualNast
i.	3.123e-01, 7.203e-02, 2.004e-02, 7.644e-02, 2.716e-02, -1.165e-01, 1.565e-01, 6.176e-02, -2.361e-01 ,		SPC1 1 SPC1 1
t			SPC1 1
÷			SPC1 1 SPC1 1
÷			SPC1 1
÷			SPC1 1
-			PSHELL 1
-			\$ MSC.visualNast
÷			GRID 1
ļ.			GRID 2
4			
4			
4		· · · · · · · · · · · ·	GRID 157 GRID 158
Ŀ.,			CTRIA3 1
1.			CTRIA3 2
			•
			CTRIA3 2.56
Ι.			CTRIA3 257
			ENDDATA d7c6cfa2
	File with output data (CFX)		

-Fluid\Primer 03.,MSC.v cs NE MENT(PLOT) = ALL (PLOT) = ALL T) = ALL T,CORNER) = ALL OT, CORNER) = ALL by : MSC.visualNastran for Windows : 2002 r : 8.10 or : MSC.Nastran del : d:\Solid-Fluid\Primer 03.MOD : Mon Sep 08 14:22:50 2003 -1 .NO PC, YES , 100. , TIO,1.E+8 T,0 1 Ω 0. 1. ο. ο. 1.+MSC.VC1 Ο. ο. 1. 2 Ο. 0 Ο. 1.+MSC.VC2 <u>Q</u>. Ο. Ο. Ο. 1. ο. ï. lNastran for Windows Load Set 1 : Obremenitev 1.0.062672-1.48E-3-7.12E-2 1 0 2 1.0.024135-9.65E-4-3.10E-2 154 0 1. 0.48754 0.0914-0.65425 0 1. 0.232920.088912-0.35259 1 1 155 Nastran for Windows Constraint Set 1 : Vpetje 1 123456 140 1 123456 141 1 123456 143 1 123456 145 1 123456 148 1 123456 152 1 123456 155 Nastran for Windows Property 1 : Plosca 1 5. 1 1 5. 1 Nastran for Windows Material 1 : Jeklo 1 210000. 0.3 ο. 0. 0. ο. 0 0.18661 0.25504-8.88E-2 1 0 0 0.18661 0.27805-8.89E-2 0 0 0.34014 0.287580.074767 157 0 0 0.34014 0.287580.074767 158 0 1 38 1 144 69 66 1 143 145 256 29 28 72 1 257 1 28 72 65

File with input data (Nastran)

<u>lace</u>

FLUID FILLER EFFECT ON CELLULAR STRUCTURE

Cellular materials

Possible applications in automotive, aerospace, ship, rail and other industries.

FLUID FILLER EFFECT ON CELLULAR STRUCTURE

Cellular materials

- mechanical properties determined by the microstructure (geometry, closed or open cells) and base material;
- characteristic stress-strain behaviour under compressive loading.

FLUID FILLER EFFECT ON CELLULAR STRUCTURE

Problem statement

- to determine mechanical behaviour of open-cell cellular structures;
- to evaluate the influence of fluid pore fillers on cellular structure global behaviour;

FLUID FILLER EFFECT ON CELLULAR STRUCTURE

Influence of the pore filler

polymer FullCure

FLUID FILLER EFFECT ON CELLULAR STRUCTURE

Computational modelling

- size of the model: 2 to 8 cells per edge
- base material: polymer
- fluid pore filler: silicon
 - loading: displacement controlled
 - constraints: symmetry boundary conditions
 - contact definition: automatic single surface
- material characterisation: strain rate sensitivity

FLUID FILLER EFFECT ON CELLULAR STRUCTURE

SPH = Smoothed Particle Hydrodynamics

= X '

 $f(\mathbf{x}_{i}) \cong \sum_{i=1}^{N} \frac{m_{j}}{\rho_{i}} f(\mathbf{x}_{j}) \cdot W_{ij}$

$$f(\mathbf{X}) = \int f(\mathbf{X}') \cdot \delta(\mathbf{X} - \mathbf{X}') \cdot d\mathbf{X}$$

Dirac Delta δ function

$$(\mathbf{X} - \mathbf{X'}) = \begin{cases} 1 & \mathbf{X} = \mathbf{X'} \\ 0 & \mathbf{X} \neq \mathbf{X'} \end{cases}$$

$$f(\mathbf{x}) \Box \int f(\mathbf{x}') \cdot W(\mathbf{x} - \mathbf{x}', h) \cdot d\mathbf{x}'$$

Particle approximation

$$f(\mathbf{x}) \Box \sum_{i=1}^{N} f(\mathbf{x}_{i}) \cdot W(\mathbf{x} - \mathbf{x}_{i}, h) \cdot \Delta V_{i}$$

$$m_j = \Delta V_j \cdot \rho_j$$

Domain

Smoothing length (h)

FLUID FILLER EFFECT ON CELLULAR STRUCTURE

ALE and SPH results comparison

lace

FLUID FILLER EFFECT ON CELLULAR STRUCTURE

Computational simulations

FLUID FILLER EFFECT ON CELLULAR STRUCTURE **ALE and SPH results comparison** Higher relative density Higher fluid filler

influence

influence of the filler is higher at higher relative densities of cellular structure;

increasing the filler's viscosity increases the cellular structure global stiffness;

SHOCK WAVE EFFECT ON CELLULAR STRUCTURE

Problem statement and experimental setup

- PMMA container is filled with water.
 The SEP explosive set in the PVC pipe, positioned at the water surface, is used as booster explosive for shock wave generation and initiated by electric detonator.
- Aluminum foam is placed at the bottom of the water container.

Experimental setup

The **shadowgraph method** was used to observe the generation of shock wave and its influence on the cellular structure at the **Shock Wave and Condensed Matter Research Center, Kumamoto University**.

Experimental results

The following video was recorded using the **shadowgraph system** and a high speed video camera HPV-1 with a frame rate of 500.000 FPS and an image resolution of 320 x 260

Experimental results

The speed of the shock wave was determined by analyzing the images taken during the experiment. The maximum value of the shock wave speed equaled to approximately **2700 m/s**. The accuracy was limited by the pixel size and was approximately +/-250 m/s.

SHOCK WAVE EFFECT ON CELLULAR STRUCTURE

Computational simulations of shock wave

First a simulation of shock wave propagation through water without a foam model was performed – only a quarter of the volume was modeled due to symmetry.

The left video represents the expansion of the explosion gases (blue) while the right video represents the shock wave pressure field propagation.

SHOCK WAVE EFFECT ON CELLULAR STRUCTURE **Shock wave speed comparison** Velocity [m/s] Time [µs]

Comparison of the results shows a good correlation between the experimental and simulation results considering the measurement error.

SHOCK WAVE EFFECT ON CELLULAR STRUCTURE

Computational simulation with aluminium foam

In order to simulate the explosion effects on the deformation behavior of the open-cell aluminum foam, a **homogenized foam model** was added to the simulation.

lace

	Air	Model 1	Model 2	Model 3
	PVC SEP	The foam was modeled using Lagrangian mesh with a	The foam was modeled using Lagrangian mesh with a	The foam was modeled using Eulerian mesh with a
110 mm	Water Aluminum Foam	piecewise-linear plasticity constitutive model	piecewise-linear plasticity constitutive model	piecewise-linear plasticity constitutive model
		Water domain was modeled inside the foam.	Air domain was modeled inside the foam.	

highest stiffness was observed for model 1 (Lagrangian mesh filled with water).

lace

Lattice model of the aluminium foam

In the following simulations the aluminum foam was modeled with a **lattice model to represent irregularity of the structure**. The foam cell edges were modeled with beam finite elements and their topology was created using a developed algorithm based on Voronoi 3D regions.

SHOCK WAVE EFFECT ON CELLULAR STRUCTURE

Computational simulations with lattice models

Three different relative densities of the aluminum foam were considered: 5, 10 and 15 %.

CONCLUSION

- Engineers can now perform multiphysics computational analysis as a routine part of product development in its early stages.
- Companies and individuals that previously could not afford to invest in this technology can now readily take advantage of multiphysics computational simulations.
- Multiphysics has become a strategic tool for system engineering methodologies that account for all relevant physical phenomena that influence design and thus enable companies to develop innovative, winning products in less time and at lower cost.